Application of Random Forests in ToF-SIMS Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applied to TOF-SIMS Data

1 Vienna University of Technology, Institute of Chemical Engineering Laboratory for Chemometrics, Getreidemarkt 9/166, A-1060 Vienna, Austria [email protected], www.lcm.tuwien.ac.at 2 Vienna University of Technology, Institute of Statistics and Probability Theory Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria [email protected], www.statistik.tuwien.ac.at/public/filz 3 Max Pl...

متن کامل

TOF-SIMS in Cosmochemistry

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was introduced into cosmochemistry about a decade ago. Major advantages of TOF-SIMS compared to other ion microprobe techniques are (a) parallel detection of all secondary ions with one polarity in a single measurement – both polarities in subsequent analyses, (b) high lateral resolution, (c) sufficient mass resolution for separation of ...

متن کامل

Information from Complexity: Challenges of TOF-SIMS Data Interpretation

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) data are complex, even for the simplest systems. Yet it is within this complexity that information about sample composition, molecular orientation, surface order, chemical bonding, sample purity, etc. is contained. The challenge is how to easily extract this information from the spectra and images. Multivariate analysis (MVA) has shown p...

متن کامل

Applications of TOF-SIMS in Planetology

In planetology the analysis of micrometer-sized samples like, e.g., inclusions in meteorites, interplanetary dust, and presolar grains has become more and more important. This requires techniques with high lateral resolution, no or little sample destruction, and high sensitivity. To still obtain unbiased information on this kind of samples a technique or a suite of techniques has to be selected...

متن کامل

Variable Selection from Random Forests: Application to Gene Expression Data

Random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its use for ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2020

ISSN: 1877-0509

DOI: 10.1016/j.procs.2020.08.042